Nickel carbide as a source of grain rotation in epitaxial graphene.
نویسندگان
چکیده
Graphene has a close lattice match to the Ni(111) surface, resulting in a preference for 1 × 1 configurations. We have investigated graphene grown by chemical vapor deposition (CVD) on the nickel carbide (Ni(2)C) reconstruction of Ni(111) with scanning tunneling microscopy (STM). The presence of excess carbon, in the form of Ni(2)C, prevents graphene from adopting the preferred 1 × 1 configuration and leads to grain rotation. STM measurements show that residual Ni(2)C domains are present under rotated graphene. Nickel vacancy islands are observed at the periphery of rotated grains and indicate Ni(2)C dissolution after graphene growth. Density functional theory (DFT) calculations predict a very weak (van der Waals type) interaction of graphene with the underlying Ni(2)C, which should facilitate a phase separation of the carbide into metal-supported graphene. These results demonstrate that surface phases such as Ni(2)C can play a major role in the quality of epitaxial graphene.
منابع مشابه
Epitaxial graphene on silicon carbide: Introduction to structured graphene
We present an introduction to the rapidly growing field of epitaxial graphene on silicon carbide, tracing its development from the original proof-of-concept experiments a decade ago to its present, highly evolved state. The potential of epitaxial graphene as a new electronic material is now being recognized. Whether the ultimate promise of graphene-based electronics will ever be realized remain...
متن کاملMagnetotransport in high mobility epitaxial graphene
Epitaxial graphene layers grown on single-crystal SiC have large structural coherence domains and can be easily patterned into submicron structures using standard microelectronics lithography techniques. Patterned structures show two-dimensional electron gas properties with mobilities exceeding 3 m2/Vs. Magnetotransport measurements (Shubnikov–de Haas oscillations) indicate that the transport p...
متن کاملIn situ observations of the atomistic mechanisms of Ni catalyzed low temperature graphene growth.
The key atomistic mechanisms of graphene formation on Ni for technologically relevant hydrocarbon exposures below 600 °C are directly revealed via complementary in situ scanning tunneling microscopy and X-ray photoelectron spectroscopy. For clean Ni(111) below 500 °C, two different surface carbide (Ni2C) conversion mechanisms are dominant which both yield epitaxial graphene, whereas above 500 °...
متن کاملField effect in epitaxial graphene on a silicon carbide substrate
Field effect in epitaxial graphene on a silicon carbide substrate Gong Gu Sarnoff Corporation, CN5300, Princeton, New Jersey 08543 Shu Nie and R. M. Feenstra Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 R. P. Devaty and W. J. Choyke Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 152650 Winston K. Chan and Michael G. K...
متن کامل100-GHz transistors from wafer-scale epitaxial graphene.
The high carrier mobility of graphene has been exploited in field-effect transistors that operate at high frequencies. Transistors were fabricated on epitaxial graphene synthesized on the silicon face of a silicon carbide wafer, achieving a cutoff frequency of 100 gigahertz for a gate length of 240 nanometers. The high-frequency performance of these epitaxial graphene transistors exceeds that o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS nano
دوره 6 4 شماره
صفحات -
تاریخ انتشار 2012